A System Identification Using DRNN Based on Swarm Intelligence
نویسندگان
چکیده
Original Elman, which is one of the well-known dynamic recurrent neural network (DRNN), has been improved to easily apply in dynamic systems identification during the past decade. In this paper, a learning algorithm for Original Elman neural networks (ENN) based on modified particle swarm optimization (MPSO), which is a swarm intelligent algorithm (SIA), is presented. MPSO and Elman are hybridized to form MPSO-ENN hybrid algorithm as a system identifier. Simulation experiments show that MPSO-ENN is a more effective swarm intelligent hybrid algorithm (SIHA), which results in an identifier with the best trained model. Dynamic identification system (DIS) of the MPSOENN is obtained.
منابع مشابه
Artificial Intelligence Based Approach for Identification of Current Transformer Saturation from Faults in Power Transformers
Protection systems have vital role in network reliability in short circuit mode and proper operating for relays. Current transformer often in transient and saturation under short circuit mode causes mal-operation of relays which will have undesirable effects. Therefore, proper and quick identification of Current transformer saturation is so important. In this paper, an Artificial Neural Network...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملNonlinear Structural Behaviour Identification using Digital Recurrent Neural Networks
Primljeno (Received): 2011-10-10 Prihvaćeno (Accepted): 2011-12-21 Original scientific paper Dynamical systems contain nonlinear relations which are difficult to model with conventional techniques. Hence, efficient nonlinear models are needed for system analysis, optimization, simulation and diagnosis of nonlinear systems. In recent years, computational-intelligence techniques such as neural ne...
متن کاملLearning of B-spline Neural Network Using New Particle Swarm Approaches
New approaches of particle swarm optimisation algorithm based on Gaussian and Cauchy distributions to adjust the control points of B-spline neural networks are proposed. B-spline networks are trained by gradient-based methods, which may fall into local minimum during the learning procedure. To overcome the problems encountered by the conventional learning methods, particle swarm optimisation ...
متن کاملSolving Fractional Programming Problems based on Swarm Intelligence
This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to s...
متن کامل